Surface Modified Alloy Resource of Ti based Implant with Electromagnetic Structures
This research is funded by a grant from the Romanian Ministry of Education and Research, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2020-0404, within PNCDI III
Posted on: 2021-11-22
In the present research paper, two systems based on Ti-Nb-Zr-Ta and Ti-Nb-Zr–Fe, containing non-toxic elements, are considered and investigated. The first aim of the paper is to enlarge up-to-date developed β-type Ti alloys, analyzing three different compositions, Ti-10Nb-10Zr-5Ta, Ti-20Nb-20Zr-4Ta and Ti-29.3Nb-13.6Zr-1.9Fe, in order to assess their further employment in biomedical applications. To achieve this, structural, microstructural, compositional and mechanical investigations were performed as part of this study. Based on the results obtained, the alloy with the highest Nb content seems to be the most appropriate candidate for advanced biomedical applications and, in particular, for bone substitution.
Read MorePosted on: 2021-12-25
This paper provides a novel methodology for designing implanted multiple-input and multiple-output (MIMO) antennas in the automatic fashion. The proposed optimization consists of two sequential phases for firstly configuring the geometry of an implanted MIMO antenna and then sizing the design parameters through the hierarchy top-down optimization (TDO) and regression deep neural network (DNN), respectively. It tackles the difficulty in constructing the structure of antennas and also provides optimal values for the determined variables, sufficiently. This methodology results in valid electromagnetic (EM)-verified post-layout generation that is ready-to-fabricate. The effectiveness of the proposed optimization-oriented method is verified by designing and optimizing the implanted MIMO antenna in the frequency band of 4.34–4.61 GHz and 5.86–6.64 GHz suitable for medical applications at the emerging wireless band. For our design, we employ the actual biological tissues as bone, liquid (%1 sodium chloride, %40 sugar in distilled water), and plexiglass surroundings with a bio-compatible substrate, as aluminium oxide on a large ground plane, that is suitable to be used in a particular biomedical applications involving smart implants.
Read MorePosted on: 2022-02-10
Worldwide, a large number of patients are benefited every year due to technological advancement in implantable medical devices (IMDs) such as in hyperthermia and bio-telemetry. The combination of sensors and antennas defined the quality of the implantable device. Antenna communities strive hard to fulfill the needs of the medical world by introducing new designs and concepts in this field. The purpose of this study is to identify major existing challenges and provide suitable solution of these challenges for implant applications. Present implant antennas have faced inferior performance due to high metallic losses and varied implant depth. The human body is a combination of dielectric materials, regardless of whether it is liquid (eg. water), gels or hard bones. In this study, first time a dielectric resonator antenna (DRA) resonating at 2.45 GHz, has been proposed as an implantable antenna with no metallic losses, varied implant depth performance and bio-compatibility. The implant DRA is placed on a bio-compatible polyvinyl chloride (PVC) substrate with a thickness of 0.5 mm. The rectangular DRA excited by a coplanar waveguide feed is proposed and its performance is compared with the help of four phantoms given in the literature. A detailed link design study was also undertaken in view of the different applications.
Read MorePosted on: 2022-07-15
Wireless networks have gained significant attention and importance in healthcare as various medical devices such as mobile devices, sensors, and remote monitoring equipment must be connected to communication networks. In order to provide advanced medical treatments to patients, high-performance technologies such as the emerging fifth generation/sixth generation (5G/6G) are required for transferring data to and from medical devices and in addition to their major components developed with improved optimization methods which are substantially needed and embedded in them. Providing intelligent system design is a challenging task in medical applications, as it affects the whole behaviors of medical devices. A critical review of the medical devices and the various optimization methods employed are presented in this paper, to pave the way for designers to develop an apparatus that is applicable in the healthcare industry under 5G technology and future 6G wireless networks.
Read MorePosted on: 2022-12-03
Nowadays in our society modern science uses a wide range of materials to perform multiple functions. One of the fields in which biological, synthetic and hybrid materials have found various applications is related to the medical one. The variety of materials used in medicine adapts to specific requirements and applications, due to the wide range of physical, chemical and biological properties that these materials can guarantee. The present review paper offers a short review, based on the data available in the scientific literature, on the possibility of using materials for dental application.
Read MorePosted on: 2022-12-03
For wireless power transfer (WPT), an implantable cubic rectenna MIMO system (CRMS), operating in dual ISM frequency bands of 2.45 and 5.8 GHz, is presented as a receiver (Rx). CRMS is evolved to the proposed biocompatible full package cubic rectenna (FPCR) by including the power and data management circuit modules. The dual frequency bands differentiated by orthogonal circular polarization (CP) in a spatial quadrature would serve as propagation channels for power, data, and control signals. Four dual branch rectifiers are designed using both distributed and lumped elements on the backside of individual antenna elements. To demonstrate the feasibility of the proposed work as an integrated system for WPT, the structures are fabricated individually, where the transmitter (Tx), which is an external antenna, and rectifiers are tested in free space, and FPCR in a custom made canonical phantom. After validation of individual measurements, power delivery from the Tx to the FPCR is conducted experimentally to measure the integrated system’s RF-DC total conversion efficiency (TCE). The FPCR is designed to receive low RF power (P RF) of 0 dBm, where a single cubic rectenna element (CRE) provides DC power (P DC ) of 0.26 mW and 0.33 mW at 2.45 GHz and 5.8 GHz, respectively. Thereafter, the interconnection of CREs in a series/parallel configuration improved PDC to 0.5/1.39 mW and 0.51/1.64 mW, respectively. Additionally, human safety is considered by evaluating a maximum permissible exposure (MPE) limit and specific absorption rate (SAR) distribution in a canonical tissue model when both Tx and FPCR are excited with 1W power.
Read MorePosted on: 2023-02-20
Wearable antennas are the vital components for Body Centric Communication (BCC). These antennas have recently gained the attention of researchers and have received a great deal of popularity due to their attractive characteristics and opportunities. They are fundamental in the Wireless Body Area Networks (WBANs) for health care, military, sports, and identification purposes. Compared to traditional antennas, these antennas work in close proximity to the human body, so their performance in terms of return loss, gain, directivity, bandwidth, radiation pattern, efficiency, and Specific Absorption Rate (SAR) is influenced by the coupling and absorption of the human body tissues. Additionally, in the design of these antennas, size, power consumption, and speed can also play a paramount role. In most cases, these antennas are integrated into the clothes, or in some cases, they may be fixed over the skin of the users. When these characteristics are considered, the design of wearable antennas becomes challenging, particularly when textile materials are examined, high conductivity materials are used during the manufacturing process, and various deformation scenarios have an impact on the design’s performance. To enhance the overall performance of the wearable antennas and to reduce the backward radiation towards the human body, metamaterial surfaces are introduced that provide a high degree of isolation from the human body and significantly reduce the SAR. This paper discusses the state-of-the-art wearable/textile/flexible antennas integrated with metamaterial structures composed of wearable/flexible substrate materials, with a focus on single and dual band antenna designs. The paper also reviews the critical design issues, various fabrication techniques, and other factors that need to be considered in the design of wearable/textile/flexible antennas. All the designs presented in this work are of the recent developments in wearable technology.
Read MorePosted on: 2023-02-20
Continuous monitoring and treatment of various diseases with biomedical technologies and wearable electronics has become significantly important. The healthcare area is an important, evolving field that, among other things, requires electronic and micro-electromechanical technologies. Designed circuits and smart devices can lead to reduced hospitalization time and hospitals equipped with high-quality equipment. Some of these devices can also be implanted inside the body. Recently, various implanted electronic devices for monitoring and diagnosing diseases have been presented. These instruments require communication links through wireless technologies. In the transmitters of these devices, power amplifiers are the most important components and their performance plays important roles. This paper is devoted to collecting and providing a comprehensive review on the various designed implanted amplifiers for advanced biomedical applications. The reported amplifiers vary with respect to the class/type of amplifier, implemented CMOS technology, frequency band, output power, and the overall efficiency of the designs. The purpose of the authors is to provide a general view of the available solutions, and any researcher can obtain suitable circuit designs that can be selected for their problem by reading this survey.
Read MorePosted on: 2023-02-20
We propose and develop a novel rigorous technique that enables one to obtain the explicit numerical values of parameters at which several lowest-order harmonics of the scattered field are suppressed. This provides partial cloaking of the object, a perfectly conducting cylinder of circular cross section covered by two layers of dielectric separated by an infinitely thin impedance layer, a two-layer impedance Goubau line (GL). The developed approach is a rigorous method that enables one to obtain in the closed form (and without numerical calculations) the values of parameters providing the cloaking effect, achieved particularly in terms of the suppression of several scattered field harmonics and variation of the sheet impedance. This issue constitutes the novelty of the accomplished study. The elaborated technique could be applied to validate the results obtained by commercial solvers with virtually no limitations on the parameter ranges, i.e., use it as a benchmark. The determination of the cloaking parameters is straightforward and does not require computations. We perform comprehensive visualization and analysis of the achieved partial cloaking. The developed parameter-continuation technique enables one to increase the number of the suppressed scattered-field harmonics by appropriate choice of the impedance. The method can be extended to any dielectric-layered impedance structures possessing circular or planar symmetry.
Read MorePosted on: 2023-03-25
Nanoporous/nanotubular complex oxide layers were developed on high-fraction β phase quaternary Ti-Nb-Zr-Ta and Ti-Nb-Zr-Fe promising biomedical alloys with a low elasticity modulus. Surface modification was achieved by electrochemical anodization aimed at the synthesis of the morphology of the nanostructures, which exhibited inner diameters of 15–100 nm. SEM, EDS, XRD, and current evolution analyses were performed for the characterization of the oxide layers. By optimizing the process parameters of electrochemical anodization, complex oxide layers with pore/tube openings of 18–92 nm on Ti-10Nb-10Zr-5Ta, 19–89 nm on Ti-20Nb-20Zr-4Ta, and 17–72 nm on Ti-29.3Nb-13.6Zr-1.9Fe alloys were synthesized using 1 M H3PO4 + 0.5 wt% HF aqueous electrolytes and 0.5 wt% NH4F + 2 wt% H20 + ethylene glycol organic electrolytes.
Read MorePosted on: 2023-06-24
Assistive devices are becoming increasingly popular for physically disabled persons suffering tetraplegia and spinal cord injuries. Intraoral tongue drive system (iTDS) is one of the most feasible and non-invasive assistive technology (AT), which utilises the transferring and inferring of user intentions through different tongue gestures. Wireless transferring is of prime importance and requires a suitable design of the intra-oral antenna. In this paper, a compact circularly polarized differential intra-oral antenna is designed, and its performance is analysed within heterogeneous multilayer mouth and head models. It works at 2.4 GHz in the Industrial, Scientific, and Medical (ISM) band. The footprint of the differential antenna prototype is 0.271 λg × 0.271 λg × 0.015 λg. It is achieved using two pairs of spiral segments loaded in diagonal form near the edges of the central rotated square slot and a high dielectric constant substrate. Its spiral-slotted geometry further provides the desired swirling and miniaturization at the desired frequency band for both mouth scenarios. Additionally, corner triangular slits on the radiating patch assist in tuning the axial ratio (< 3 dB) in the desired ISM band. To validate the performance of the proposed in-mouth antenna, the measurement was carried out using the minced pork and the saline solution for closed and opened mouth cases, respectively. The measured − 10 dB impedance bandwidth and peak gain values in the minced pork are from 2.28 to 2.53 GHz (10.39%) and − 18.17 dBi, respectively, and in the saline solution, are from 2.3 to 2.54 GHz (9.92%) and − 15.47 dBi, respectively. Further, the specific absorption rate (SAR) is estimated, and the data communication link is computed with and without a balun loss. This confirms that the proposed differential intraoral antenna can establish direct interfacing at the RF front end of the intraoral tongue drive system.
Read MorePosted on: 2021-11-17
Biomedical implanted devices are typically used for interacting with organs and/or for investigating various physiological signals. Hence, enhanced performance devices for clinical uses have got the attention of researchers. In this study, a multi-band implanted microstrip antenna suitable for transmitting/receiving biomedical signals in the Industrial, Scientific and Medical (ISM) frequency bands is presented. The antenna is built on a bio-compatible substrate, as titanium dioxide (TiO 2 ) with relative permittivity of 95. The ground plane is thought to be a bio-metallic implant located within a bone. The proposed antenna is compact in size, 14 × 18 × 1.6 mm 3 , and works in both 2.45 GHz and 5.8 GHz centered frequency bands. It is designed and optimized considering the actual biological tissues as bone, muscle, fat, and skin surroundings. The simulation results referring to a planar stratification prove that the multiband single microstrip antenna is working properly within the human body and it can be used for medical communication services.
Read MorePosted on: 2022-02-10
Investigative electromagnetic (EM) simulations for bended antenna designs, also used for wearable devices, plays an important role in the design process. The simulation for conformal antennas is time consuming also considering the effects of the presence of the feeding/beamforming network on the antenna performances. To tackle this drawback, a new simulation environment is created, where Keysight ADS tool is employed for modeling the initial microstrip antenna of which shape is determined using a bottom-up optimization (BUO) method. The employed BUO in the ADS environment significantly helps the designer in generating the antenna geometries that exhibit the required performances in terms of bandwidth and radiation patterns. Afterwards, the CST Microwave Studio (Dassault Systèmes) is used for bending the previously designed flat microstrip antenna, and accurately evaluate its performances by numerical simulations. To verify the efficiency of the proposed methodology, one bended microstrip antenna in the frequency band of 8.8-9.4 GHz is designed and the radiation pattern responses are depicted.
Read MorePosted on: 2022-02-10
The ability to comprehend the medical images and make prediction on diseases, significantly depends on any medical doctors' experiences. In the wireless medical communications, this process is not developing effectively, and significant tasks are required to make it of high accuracy. Hence, advanced methods are required for accurately diagnosing the various diseases and in the shortest time. Use of deep learning techniques can be a proper solution due to their suitable accuracy in the image segmentation giving rise to pathologic prediction by considering the medical images. In this paper, we employ the deep neural network for predicting the various cysts that can be exist in the human's brain. This intelligent method can estimate and predict the types of brain cysts by the provided medical images. The experimental results demonstrate the well-performance of the presented method to be used for predicting the patients with affections by the help of scanned medical images.
Read MorePosted on: 2022-02-10
This paper presents an accurate and efficient optimization-based approach for modelling and sizing implanted antennas automatically. The proposed method employs the long short-term memory (LSTM) artificial neural network (ANN) for predicting the design specifications in not only one frequency but also in a large frequency band. The entire process is performed in an automated environment that is the combination of electronic design automation (EDA) tools and the numerical analyzer. Based on this intelligent method, the difficulty of designing electromagnetic (EM)-based antennas is solved to the most degrees and the design parameters can be achieved in the easiest way. To validate the efficiency of the presented ANN, two implanted antennas are designed; they and realized on a grounded biocompatible substrate and covered by bone, muscle, fat, and skin tissues, respectively. These implanted antennas are optimized in terms of input scattering parameter, E-plane and H-plane radiation pattern (RP) specifications and the suitable design parameters are provided automatically. The modelled implanted antennas are appropriate to be used at the industrial, scientific, and medical (ISM) frequency band between 2.4 GHz and 2.5 GHz.
Read More